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Augmented-plane-wave energy-band calculations have been performed for Te having a
hypothetical simple cubic crystal structure whose lattice spacing is based on extrapolation
of experimental results inthe metastable Te-Au and Te-Ag systems. The eigenvalues, calculated
along five axes of high symmetry, indicate that simple cubic Te is expected to be metallic,

and to have a relatively high density of states at the Fermi surface.

The properties de-

duced from the band structure are compared with those of the high-pressure phases of Te
and are found to be similar to those of the phase which exists between 40 and 70 kbar at

room temperature.

I. INTRODUCTION

The simple cubic crystal structure, although dis-
cussed extensively in many textbooks, occurs quite
rarely in nature., With the exception of one allo-
tropic form of Po, this structure does not exist in
any known equilibrium elements or alloys. How-
ever, since the advent of rapid quenching from the
liquid state, metastable simple cubic phases have
been observed in several alloy systems, the most
interesting of which are based on Te.? It is possi-
ble in the binary alloys Te-Au and Te-Ag to produce
a single-phase simple cubic alloy over a wide range
of compositions extending as high as 85-at. % Te.
The proximity of the high end of this range to pure
Te suggests that the band structure of hypothetical
simple cubic Te should be of some interest. The
only unknown parameter required to perform aug-
mented-plane-wave (APW) calculations of this type
is an appropriate lattice spacing, and a reasonable
value for this may be obtained by extrapolation of
the Te-Au and Te-Ag experimental data.

Additional interest in these particular calculations
is provided by the existence of several high-pres-
sure phases of Te with properties quite different
from those of hexagonal Te. Several investiga-
tions®=" have shown that Te undergoes phase tran-
sitions at room temperature around 40 and 70 kbar,
proceeding from the A8 selenium structure to an
unidentified structure and finally to a simple rhom-
bohedral arrangement isomorphic with g-polonium.
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The unidentified phase existing between 40 and 70
kbar has been found by Bridgman® and others® to be
metallic, and Matthias!® has discovered that it is
also superconducting with a transition temperature
of 3.3 °K. Jamieson and McWhan" have shown that
if a simple cubic phase of Te exists it should occur
in this pressure range and in a region below room
temperature. Although their x-ray diffraction data
and that of Kabalkina ef al.!! definitely cannot be in-
dexed to a simple cubic pattern, Mdssbauer stud-
ies'? show the absence of a quadrupole moment
above 40 kbar, indicating that this phase could be
related to a distorted simple cubic structure. With
this possibility in mind, it is of additional interest
to compare properties deduced from the simple
cubic band structure with those observed in the
high-pressure phases.

II. APW TECHNIQUE

The method used to perform the APW calcula-
tions is basically that of Loucks,®® with minor mod-
ifications to allow compatibility with the computing
system and the particular form of the input data.
The muffin-tin potential was constructed starting
from the atomic wave functions for neutral Te cal-
culated by Herman and Skillman.!* The appropriate
Coulombic and exchange contributions were then
determined using Poisson’s equation, Slater’s
free-electron exchange approximation, and con-
sidering spherically symmetric contributions
from the closest 14 shells of atoms as described in
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FIG. 1. First Brillouin zone for the simple cubic

Chap. 3 of Ref. 13.
be used between APW spheres was determined by
averaging the potential described above over the
region betweenthe APW sphere, and a sphere whose

volume was that of the Wigner-Seitz unit cell.

structure.

The value of the potential to

The

entire energy scale was then shifted in the usual
manner to cause this average potential to be zero.
The choice of an APW sphere radius and the ac-
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tual numerical construction of the potential are de-
pendent on finding an appropriate value of lattice
spacing for simple cubic Te. Extrapolation of the
Te-Au and Te-Ag experimental data? predicts
values of 3.17 and 3.08 A, respectively. Another
type of prediction may be obtained based on the as-
sumption that the structure above 40 kbar has ap-
proximately the same atomic volume as the simple
cubic structure would have. If the 5.5% volume re-
duction which Bridgeman has found at 40 kbar® is
applied to the volume per atom of normal Te, the
resulting volume is 32.11 As/atom. The equivalent
simple cubic lattice spacing for this atomic volume
is 3.18 2’\, which is in close agreement with the
value obtained by extrapolating the Te-Au data.
Considering the above, the value of 3.17 A was
chosen to determine the complete band structure,
and calculations using 3. 08 A were performed only
at the symmetry points for comparison with the
other values. The same size APW sphere radius
was used for calculations with both lattice param-
eters, and was chosen to be 1.38 A, a value
slightly less than one-half of the smaller lattice
spacing.

The set of reciprocal lattice vectors to be used
in expanding the APW wave functions was selected
by requiring convergence of the energy eigenvalues
at each of the symmetry points to 0. 005 Ry. To
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FIG. 2. Energy bands along the five segments joining the symmetry points for a=3.18 & @n energies are shifted up

by 0.821 Ry).
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TABLE I. Energy eigenvalues are shown below at the
four symmetry points for both values of lattice spacing.
Those values associated with a=3.17 & are shifted up by
0.821 Ry and those for 3.08 & by 0.870 Ry.

Symmetry Energy Energy
points 38.17 A) (3.08 4)
T -0.53 -0.52
+0.51 (3) +0.59 (3)
+0.72 +0.77
+0.78 + 0,88
+0.90 (2) © +0.96 (2)
X -0.39 -0.35
-~0.02 -0.01
+0.61 (2) +0.71 (2)
+ 0,72 + 0,77
+1.02 +1.10
+1.08 +1.15
+ 1,10 +1,22
+1.20 (2) +1.27 (2)
+1.23 +1.30
M -0.25 -0.18
+0.12 (2) +0.15 (2)
+ 0,48 + 0.51
+0.70 + 0.82
+0.72 +0.77
+1.81 (3) +1.40 (2)
+1.43
+1.38 (2) +1.47 (2)
R -0.11 -0.01
+0.24 (3) +0.29 (3)
+0.71 (3) +0.77 (3)
+0.78 +0.75

achieve this degree of convergence required the
use of 32 reciprocal-lattice vectors, and it was de-
cided that the effort required to realize the usual
degree of convergence (0. 001 - 0,002 Ry) was not
feasible in this case. The calculation of individual
eigenvalues was carried to a final accuracy of

0.01 Ry.

III. RESULTS AND DISCUSSION

Although the construction of the first Brillouin
zone for the simple cubic lattice is probably famil-
iar to anyone interested in solid-state physics, this
zone is illustrated in Fig. 1 in order that there be
no confusion concerning identification of the sym-
metry points. The energy-band structure for the
five segments joining the symmetry points is shown
in Fig. 2, and the comparison of energy eigenvalues
at the symmetry points for the two values of lattice
spacing is shown in Table I. The information in
this table shows that as the lattice spacing becomes
smaller, all the eigenvalues are shifted up by
amounts < 0.1 Ry. Although the shifting is not uni-
form, it is small enough so that the statements to
be made concerning the band structure at 3.17 A
are probably also true for 3.07 A. It is clear after
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examination of Fig. 2 that the lower bands can be
identified as having had their origin from 5s or 5p
atomic orbitals. Band 1 may be considered to
have 5s origin, and the particular degeneracies of
bands 2, 3, and 4 along various symmetry axes
are quite suggestive of the directional character-
istics of atomic p states. Following this same
pattern, bands 5-8 may be loosely regarded as
associated with the atomic 54 orbitals, although
any correlation becomes less distinctive as energy
increases.

Probably the most obvious conclusion to be drawn
from these calculations is in regard to electrical
properties. Even without determining the density
of states it is possible to predict that the material
associated with this band structure would be a
metallic conductor. Since Te has six electrons
which must be considered in bands shown, semi-
conducting properties would result only if the high-
est eigenvalue associated with band 3 were lower
than the lowest eigenvalue associated with band 4,
as occurs in normal hexagonal Te. The degener-
acies along the I'=X, I'=M, and I'- R directions
clearly prohibit this possibility, and, in fact, it
can be seen that the three p bands (2, 3, and 4) al-
most completely overlap each other. In addition,
nonwithstanding the degeneracies in bands 2, 3,
and 4, the large dip in band 6 in the I'- M direc-
tion would be sufficient to ensure that the density
of states was nonzero between bands 3 and 4.

Without calculating the eigenvalues over the en-
tire first Brillouin zone and determining the elec-
tronic density of states as a function of energy, it
is impossible in a metallic conductor to determine
the theoretical Fermi energy., It is, however,
possible to approximate a region within which the
Fermi energy falls, and to consider the mean den-
sity of states averaged over a region including
several energy bands. In this case it is known
that the Fermi energy must fall below the highest
point in band 3 and above the lowest point in band
4. This implies that E; must fall in the region
0.25<Ep<0.60 Ry. (All energies are shifted up by
0.821 Ry.) A more detailed examination of the
variation of E(K) indicates that the lower limit of
this region can probably be raised to ~0.40 Ry.
Assuming that the extreme values of energy for
bands 2, 3, and 4 lie at the symmetry points, the
mean density of states for these bands can be cal-
culated from the energy range in which they are
confined. The extreme values of energy of interest
here are found for bands 2 and 4 at the symmetry
point X. Bands 2, 3, and 4, representing six
electron states per atom, are confined to ~0.7 Ry,
resulting in a mean density of states of ~9 electron
states/atom/Ry. Again, examination of the varia-
tion of E(E) indicates that the largest number of
eigenstates are probably contained between 0.3 and
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0.6 Ry, implying that the density of states in this
region, hence also in the region of the Fermi sur-
face, may be of the order of ~12-15 electron
states/atom/Ry. Although in no way certain, these
figures should provide a very crude idea of the
density of states around the Fermi surface.

The central reason for obtaining this rough value
of density of states at the Fermi surface is to at-
tempt to decide if this particular material might
reasonably be expected to be superconducting.
Comparison with calculations by Burdick®® and
Mattheiss'® show that N(Ey) for simple cubic Te is
about three or four times larger than N(Eg) for a
metal like Cu, and about 50 to 60% as large as
N(Ey) for most of the g-tungsten (A15) supercon-
ductors. According tothetheory of Bardeen, Cooper,
and Schrieffer,'” the transition temperature of a
superconductor depends primarily on the product
of N(Ez) and V, where V is the phonon mediated
attractive electron pair potential. Several inves-
tigators have proposed that the orthogonal chain
structure found in the g-tungsten arrangement is
at least partially responsible for the phonon
coupling which causes V to be positive,® and
Weger!® has attempted to show that these chains
are also responsible for the high N(Ez) found in g-
tungsten compounds. The simple cubic structure
also has three orthogonal chains of atoms, although
they are not packed as close together as the atoms
in a B-tungsten chain. Considering these factors
[the relatively high N(E,) and the chain structure],
the Te simple cubic structure might be regarded
as being favorable to superconductivity in the same
manner as the B-tungsten structure, although not to
the same degree. It is not unreasonable then to
expect that simple cubic Te might be supercon-
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ducting although certainly not in as high a tempera-
ture range as the A15 superconductors.

IV. CONCLUSIONS

The band structure of hypothetical simple cubic
Te predicts electrical properties quite different
from those of normal Te. Comparison of the me-
tallic conductivity and the possibility of a super-
conducting transition with the observed properties
of the phase of Te which forms at 40 kbar suggests
that the structure of this phase may be more closely
related to the simple cubic lattice than a cursory
examination of the x-ray data indicates. Whether
a true simple cubic phase exists in this pressure
range at lower temperatures, or the A8 structure
goes directly to the simple rhombohedral config-
uration remains an interesting but unsolved prob-
lem.

The probability of a relatively high density of
states in the region of the Fermi surface has in
itself some interesting implications. If this could
be shown to be a property of the simple cubic struc-
ture itself, and not just simple cubic Te, then this,
combined with the orthogonal chains mentioned pre-
viously, could make the simple cubic structure in
general rather favorable to superconductivity. In-
deed, this possibility would be very consistent with
the growing number of metastable simple cubic
phases which are found to be superconducting in the
range of 1-7 °K.
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